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Abstract
A recent notion in theoretical physics is that not all quantum theories arise from
quantizing a classical system. Also, a given quantum model may possess more
than just one classical limit. There is strong evidence for these facts in string
duality and M-theory, and it has been suggested that they should also have a
counterpart in quantum mechanics. In view of these developments we propose
dequantization, a mechanism to render a quantum theory classical. Specifically,
we present a geometric procedure to dequantize a given quantum mechanics
(regardless of its classical origin, if any) to possibly different classical limits,
whose quantization gives back the original quantum theory. The standard
classical limit h̄ → 0 arises as a particular case of our approach.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Sq

Mathematics Subject Classification: 81S10, 81P05

1. Introduction

1.1. Motivation

Approaching quantum mechanics from a geometric viewpoint is a very interesting topic.
The goal is a geometrization of quantum mechanics [1], similar in spirit to that of classical
mechanics [2, 3]. Beyond this similarity, however, there are numerous deep reasons. One of
these is motivated in string duality and M-theory [4, 5]. In plain words, we are confronted
with the fact that not all quantum theories arise from quantizing a classical system. Also, a
given quantum model may possess more than just one classical limit. These two facts are
in sharp contrast with our current understanding of quantum mechanics. While it is true that
these two phenomena originally arise in the theories of strings and branes [6], some authors [5]
have expressed the opinion that they should somehow be reflected at the fundamental level of
quantum mechanics as well. Let us describe the general set-up.

Quantization may be understood as a prescription to construct a quantum theory from a
given classical theory. As such, it is far from being unique. Beyond canonical quantization and
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functional integrals, a number of different, often complementary approaches to quantization are
known, each one exploiting different aspects of the underlying classical theory. For example,
geometric quantization [7–10] relies on the geometric properties of classical mechanics.
Systems whose classical phase space C is a Kähler manifold can be quantized as in [11–13]. If C
is just a Poisson manifold, then the approach of [14], based on deformation quantization [15,16],
can always be applied. A path-integral counterpart to these mathematical techniques has been
developed in [17].

A common feature to these approaches is the fact that they all take a classical mechanics
as a starting point. Thus the classical limit is a fortiori unique: it reduces to letting h̄ → 0. If
we want to allow for the existence of more than one classical limit, we are led to considering
a quantum mechanics that is not based, at least primarily, on the the quantization of a given
classical dynamics. In such an approach one would not take first a classical model and then
quantize it. Rather, quantum mechanics itself would be the starting point: a parent quantum
theory would give rise, in a certain limit, to a classical theory. If there are several different
ways of taking this limit, then there will be several different classical limits.

1.2. Summary

In this paper we put forward a geometric proposal by which quantum mechanics can be rendered
classical, or dequantized, in more than one way, thus yielding different classical limits. Under
dequantization we understand the following.

Assume that classical phase space C is R2n. Then, starting from the quantum phase space
Q of standard quantum mechanics [1], the usual classical limit h̄ → 0 is obtained as the
quotient of Q by a certain equivalence relation ∼, i.e. Q/ ∼ = R2n, and we have a trivial fibre
bundle Q → R2n. We will construct classical phase spaces Q/G = C, whereG is a Lie group
acting on Q, and Q → C will be a (not necessarily trivial) G-bundle. The associated vector
bundle will have H, the Hilbert space of quantum states, as its typical fibre. In order to qualify
as a classical phase space, C must be a symplectic manifold whose quantization must give back
the original quantum theory on Q. Different choices for G will give rise to different classical
limits.

1.3. Outline

This paper is organized as follows. Section 2 summarizes the standard Hilbert space
formulation of quantum mechanics, following the geometric presentation of [1]. We will
recall how the standard classical limit h̄ → 0 is taken. In this analysis, a natural mechanism
will arise that will allow more than one classical limit to exist. This is presented in section 3.
We illustrate our technique with some specific examples in section 4, where one given quantum
mechanics is explicitly dequantized. The physical implications of our proposal are discussed in
section 5. Some technical mathematical aspects of our construction are elucidated in section 6.

2. A geometric approach to quantum mechanics

For later purposes let us briefly summarize the geometric approach to quantum mechanics
presented in [1]. Throughout this section our use of the terms classical and quantum will be
the standard one [18].
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2.1. The Hilbert space as a Kähler manifold

The starting point is an infinite-dimensional, complex, separable Hilbert space of quantum
states, H, that is most conveniently viewed as a real vector space equipped with a complex
structure J . Correspondingly, the Hermitian inner product can be decomposed into real and
imaginary parts,

〈φ,ψ〉 = g(φ,ψ) + iω(φ,ψ), (1)

with g a positive-definite, real scalar product and ω a symplectic form. The metric g, the
symplectic form ω and the complex structure J are related as

g(φ,ψ) = ω(φ, Jψ), (2)

which means that the triple (J, g, ω) endows the Hilbert space H with the structure of a Kähler
space [2].

Thus any Hilbert space naturally gives rise to a symplectic manifold: it is the quantum
phase space Q, or the space of rays in H. Let ωQ denote the restriction of ω to Q. On Q, the
inverse of ωQ can be used to define Poisson brackets and Hamiltonian vector fields. This is
done as follows.

Any function fC : C → R defined on classical phase space C has associated a self-adjoint
quantum observable F on H. The latter gives rise to a quantum function fQ : Q → R on
quantum phase space Q, defined as the expectation value of the operator F :

fQ(ψ) = 〈ψ,Fψ〉. (3)

Now every function f : Q → R defines a Hamiltonian vector fieldXf through the equation [3]

iXf ωQ = df. (4)

In this way the Poisson bracket { , }Q on Q is defined by [3]

{fQ, gQ}Q = ωQ(Xf ,Xg). (5)

Let us now consider the classical coordinate and momentum functions qjC and pkC satisfying the
canonical Poisson brackets on C. Through the above construction one arrives at the quantum
coordinate and momentum functions qjQ and pkQ satisfying the canonical Poisson brackets on
Q:

{qjQ, pkQ}Q = δjk, {qjQ, qkQ}Q = 0 = {pjQ, pkQ}Q. (6)

It turns out that Hamilton’s canonical equations of motion on Q are equivalent to Schrödinger’s
wave equation, while the Riemannian metric g accounts for properties such as the measurement
process and Heisenberg’s uncertainty relations.

We are thus dealing with two phase spaces, which we denote C (for classical) and Q (for
quantum). Q is always infinite-dimensional, as it derives from an infinite-dimensional Hilbert
space. In contrast, C may well be finite-dimensional. Furthermore, while both C and Q are
symplectic manifolds, the latter is always Kähler, while the former need not be Kähler.

Two questions arise naturally. Firstly, what is the geometric relation between C and Q
as manifolds? Secondly, how are C and Q related as symplectic manifolds, i.e., how are their
respective symplectic forms ωC and ωQ related? When C = R2n, the answer is provided in [1]
and summarized below.
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2.2. Quantum phase space as a fibre bundle over classical phase space

For a classical system withndegrees of freedom, let us collectively denote byfr , r = 1, . . . , 2n,
the quantum coordinate and momentum functionsqjQ andpkQ. We define an equivalence relation
on Q as

x1 ∼ x2 iff fr(x1) = fr(x2)∀r. (7)

Through this equivalence relation, the quantum phase space Q becomes a trivial fibre bundle
with fibre H over the classical phase space R2n:

Q −→ Q/ ∼ = R2n. (8)

2.3. Relation between the classical and the quantum symplectic forms

A tangent vector v ∈ TxQ is said to be vertical at x ∈ Q if v(fr) = 0 ∀r . Therefore
the vertical directions are those in which the quantum coordinate and momentum functions
assume constant values. Equivalently, the vertical subspace Vx at x ∈ Q may be defined as

Vx = {v ∈ TxQ : ωQ(Xfr (x), v) = 0 ∀r}. (9)

Let V⊥
x denote the ωQ-orthogonal complement of the vertical subspace at x ∈ Q. Each tangent

space splits as the direct sum

TxQ = Vx ⊕ V⊥
x , (10)

and the tangent vectors that lie in V⊥
x are said to be horizontal at x. It turns out that the quantum

states lying on a horizontal cross section of the bundle (8) are precisely the generalized coherent
states of [19, 20].

Now, if u and v are vectors on C = R2n, we denote by uh and vh their horizontal lifts to
Q. Then the classical symplectic structure ωC is related to its quantum counterpart ωQ through

ωC(u, v) = ωQ(uh, vh), (11)

i.e., ωC is the horizontal part of ωQ.

3. Taking a classical limit

The geometric presentation summarized in section 2 makes it clear that the quantum theory
contains all the information about the classical theory. In this sense, as explained in section 1,
we should think of quantum mechanics as being prior to classical mechanics. Rather than
quantizing a classical theory, rendering quantum mechanics classical, or dequantizing it,
appears to be the key issue. How can one dequantize?

3.1. Symplectic reduction

Our primary concern will be to obtain a classical symplectic manifold (C, ωC) from its quantum
counterpart (Q, ωQ), in such a way that the quantization of (C, ωC) will reproduce (Q, ωQ)
as a symplectic manifold, regardless of the Riemannian metric gC on C, if any. In principle,
dequantization may be thought of as the symplectic reduction from (Q, ωQ) to a symplectic
submanifold (C, ωC); a more general definition will be given in section 3.3. In having C as
a reduced symplectic manifold of Q we are assured that the quantization of C reproduces Q.
See [3, 21] for a treatment of symplectic reduction.

We do not require the metric gQ on Q to descend to a metric gC on C. Disregarding
the metric gC is justified, as the metric gQ of equation (1) can always be obtained from the
symplectic form ωQ through the Kähler condition (2).
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In contrast, the symplectic structure is an essential ingredient to keep in the passage from
quantum to classical, as classical phase space is always symplectic. In what follows we will
consider symplectic structures as in [22, 23] but, more generally, one could relax C to be a
Poisson manifold.

3.2. Reduction via fibre bundles

A useful approach to symplectic reduction is via fibre bundles. When C = R2n, the classical
limit arises in [1] as the base space of a trivial fibre bundle with fibre H and total space Q. This
suggests considering fibre bundles Q → C, with fibre H and total space Q, over some other
finite-dimensional base manifold C. If the classical phase space C so obtained is a symplectic
manifold whose quantization reproduces the initial quantum theory on Q, then associated with
that fibre bundle there is one classical limit.

Let us first examine trivial fibre bundles. The equivalence relation of section 2.2 is singled
out because it is well suited to obtain the standard coherent states of [19, 20]. We will see
in section 4.3 one particular example of a certain group G acting on Q such that Q/G = C
coincides with the result of taking the standard classical limit h̄ → 0. The procedure of
section 4.3 is in fact quite general in order to replace equivalence relations with group actions.

Nontrivial fibre bundles may also be considered. They provide a realization of the
statement presented in [24], to theeffect that one can always choose local coordinates on
classical phase space, in terms of which quantization becomes a local expansion in powers of
h̄ around a certain local vacuum. This expansion is local in nature: it does not hold globally
on classical phase space when the fibre bundle is nontrivial. In this sense, quantization is
mathematically reminiscent of the local triviality property satisfied by every fibre bundle [25]
while, physically, it is reminiscent of the equivalence principle of general relativity [26].

3.3. Definition of dequantization

For our purposes, dequantization will mean the following. Let G be a Lie group acting on Q.
Moding out by the action of G we will construct principal G-bundles

Q −→ Q/G = C (12)

over finite-dimensional symplectic manifolds C. We require the associated vector bundle to
have H as its fibre. Moreover the lift of ωC to Q must equal ωQ.

Equation (11) expressed the property that, when C = R2n, ωC was simply the horizontal
part of ωQ. Horizontality was closely related to coherence. Here we have no notion of
horizontality because any ωC will work, provided its lift to Q equals ωQ (as is the case, for
example, in symplectic reduction). In general, the best we can do is to find local canonical
coordinates on C in terms of which

ωC = dpk ∧ dqk. (13)

With respect to these local coordinates, local coherent states |zk〉 can be defined simply as
eigenvectors of the local annihilation operator ak = Qk + iPk , where Qk and Pk are the
quantum observables corresponding to qk and pk . How do Qk and Pk dequantize to qk and
pk?

3.4. Classical functions from quantum observables

When dequantizing, instead of having classical functions fC : C → R to turn into quantum
observables F , we have quantum observables F out of which we would like to obtain classical
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functions. We can use equation (3) in order to define the quantum function fQ : Q → R

corresponding to the observable F . Now, in the examples that follow, C is a submanifold of
Q. Hence the restriction of fQ to C gives rise to a well-defined classical function fC : C → R

whose quantization reproduces the quantum observable F .

4. Examples of different classical limits

In the following we give some examples of the dequantization of the nonrelativistic quantum
mechanics of n degrees of freedom. We will concentrate on some specific nonlinear choices for
the manifold C, namely complex projective spaces CP n and complex submanifolds thereof.
Linear classical phase spaces have been dealt with in sections 2.2 and 2.3. Coherent states on
spheres have been constructed in [27].

4.1. The standard coherent states

Points in CP n may be specified by homogeneous coordinates [w0 : . . . : wn] on Cn+1.
Alternatively, holomorphic coordinates on CP n in the chart with, say, w0 �= 0, are given by
zk = wk/w0, with k = 1, . . . , n.

In order to discuss coherent states it is convenient to use homogeneous coordinates. Then
we have a Kähler form

ω = i
n∑
k=0

dwk ∧ dw̄k, (14)

which we take to define a symplectic structure with invariance group U(n + 1). As we are
working in homogeneous coordinates we still have to mod out by U(1), so the true invariance
group of the Kähler form is G = U(n + 1)/U(1) � SU(n + 1). Let G′ ⊂ G be a maximal
isotropy subgroup [20] of the vacuum state |0〉. Coherent states |ζ 〉 are parametrized by points
ζ in the coset space G/G′ [20]. Set n = 1 for simplicity, so CP 1 � S2. Then G′ = U(1),
and coherent states |u〉 are parametrized by points u in the quotient space S2 = SU(2)/U(1).

We will find it convenient to recall Berezin’s quantization [11] of the Riemann sphere.
The Hilbert space is most easily presented in holomorphic coordinates z, z̄, which have the
advantage of being almost global coordinates on S2. The Kähler potential

KS2(z, z̄) = log (1 + |z|2) (15)

produces an integration measure

dµ (z, z̄) = 1

2π i

dz ∧ dz̄

(1 + |z|2)2 . (16)

The Hilbert space of states is the space Fh̄(S2) of holomorphic functions on S2 with finite
norm, the scalar product being

〈ψ1|ψ2〉 =
(

1

h̄
+ 1

) ∫
S2

dµ (z, z̄) (1 + |z|2)−1/h̄ ψ1(z) ψ2(z). (17)

It turns out that h̄−1 must be an integer. For ψ to have finite norm, it must be a polynomial of
degree less than h̄−1. In fact, setting h̄−1 = 2j + 2, Fh̄(S2) is the representation space for the
spin-j representation of SU(2), which is the isometry group of S2. The semiclassical regime
corresponds to j → ∞.
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4.2. Interlude: the unitary group of Hilbert space

Some care is needed when dealing with the unitary group of Hilbert space H. In what follows
we will consider the groups U(H) and U(∞), whose definitions and properties we examine
next.

We first recall the following theorem [25]: a sufficient condition for a fibre bundle to be
trivial is that either the stucture group or the base manifold be contractible to a point. Hence
the classical limit may be nonglobal only if both the structure group and the base manifold of
the fibre bundle are noncontractible.

By definition, the group U(H) comprises all unitary transformations of H. One may
topologize U(H) with different, nonequivalent topologies. Two popular choices are the norm
topology and the strong operator topology [28]. However, it turns out that both of them render
U(H) contractible [28, 29], so

π1(U(H)) = 0 (18)

and all principal U(H)-bundles are trivial, whatever the base manifold.
Next let us consider the groupU(n) of n×n unitary matrices u in a fixed, finite dimension

n. We may think of u as acting on H, which is infinite-dimensional, by simply enlarging it
with an infinite-dimensional identity matrix:(

u ·
· 1

)
. (19)

In this way we have the inclusions U(n) ⊂ U(H) for all n. Now enlarge every n× n unitary
matrix to an (n + 1)× (n + 1) unitary matrix by adding one row and one column. The group
U(∞) is defined by performing this enlargement infinitely many times. This we denote as

U(∞) = lim
n→∞U(n). (20)

Defined in this way, U(∞) is a strict subgroup of U(H),
U(∞) ⊂ U(H), (21)

because not every element of U(H) can be obtained in the manner just described.
ForU(∞) to become a topological group, we need to endow it with a topology. However,

on U(∞) we do not want to consider the topology induced by U(H). For reasons that will
become clear presently, we want to topologize U(∞) with a topology of its own. In order to
do this we consider the usual topology on U(n) (the one induced by Cn) and ask ourselves,
what topology is there on U(∞) that renders every matrix inclusion

U(n) ⊂ U(∞) (22)

continuous. The answer to this question is known in the mathematical literature [30]:
there exists on U(∞) a topology, called the direct limit topology, that renders every matrix
inclusion (22) continuous, while at the same time being the maximal topology that enjoys
this property. In this way U(∞) becomes a topological group. Moreover, this topology also
respects the fundamental group

π1(U(n)) = Z (23)

in the passage n → ∞:

π1(U(∞)) = Z. (24)

Hence U(∞) is not contractible to a point, and principal U(∞)-bundles over noncontractible
base manifolds may be nontrivial.
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4.3. Global coherent states from trivial fibre bundles

Let Q be the manifold of rays in H. We define an action of the group U(∞) on Q as follows:
first lift Q to H, then apply a U(∞) transformation. In this way we obtain a fibre bundle
whose base is C = Q/U(∞). Now any two points in Q can always be connected by means
of a transformation in U(∞), so this C reduces to a point. This is an instance of the situation
mentioned in section 3, that not every bundle will give rise to a reasonable classical limit.

A sensible classical limit is the following. H being infinite-dimensional, we may require
the action of U(∞) to act as the identity along, say, the first n + 1 complex dimensions of H,
while allowing it to act nontrivially on the rest. In this way the resulting C = Q/U(∞) is the
complex n-dimensional projective space CP n. It is the base of a principal fibre bundle whose
total space is Q and whose fibre is U(∞). This bundle is trivial by construction.

Next consider the trivial vector bundle, with fibre H, that is associated with this trivial
principal bundle. Triviality implies that one has the globally defined diffeomorphism Q �
C × H. Now coherent states lie on sections of this bundle. Hence the triviality of this bundle
ensures that these coherent states are globally defined on C. An equivalent phrasing of this
statement is to say that the semiclassical regime is globally defined on C. Upon quantization,
all observers on C will agree on what is a semiclassical versus what is a strong quantum effect.
Setting n = 1 for simplicity, if one observer on C measures j < ∞, then so will all other
observers. If the measure is j → ∞, then so will it be for all other observers, too.

Now U(∞) is the invariance group of the Kähler form on Q

ω = i
∞∑
k=0

dwk ∧ dw̄k. (25)

The Kähler form on the resulting CP n is given in equation (14), i.e., it is the one obtained by
quotienting (25) with this group action. Incidentally, the metric g on Q also descends to the
quotient CP n, and we can now apply Berezin’s quantization [11]. In fact we have picked our
group action precisely so as to obtain a dequantization of Q to CP n that exactly reproduces
the standard classical limit h̄ → 0 for CP n. Similarly, the corresponding coherent-state
quantization [19] is the one summarized in section 4.1. This example also illustrates the power
of fibrating Q by means of a group action. Yet another choice for the group action will lead to
another different dequantization.

4.4. Local coherent states from nontrivial fibre bundles

Let us consider the Hopf bundle

S2n+1/U(1) � CP n, (26)

where the sphere S2n+1 is the submanifold of Cn+1 defined by

|z0|2 + · · · + |zn|2 = 1, (27)

and the U(1) action is

(z0, . . . , zn) �→ eiα (z0, . . . , zn). (28)

This fibre bundle is nontrivial [31].
We define an action of U(∞) on Q as follows: first lift Q to the infinite-dimensional

sphere S∞, then embed S∞ into H using equation (27) in the limit n → ∞, then apply a
U(∞) transformation. We require that this action be given by equation (28) on the first n + 1
dimensions of H, i.e., only a U(1) subgroup of U(∞) will act on them. Along the remaining
infinite dimensions we let U(∞) act unconstrained. In this way we obtain a principal U(∞)
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fibre bundle whose base C is CP n and whose total space is Q. This CP n inherits its symplectic
structure (14) by quotienting (25) with the group action, so its standard quantization reproduces
the original quantum theory on Q, up to an important difference. Coherent states (regarded
as sections of the associated vector bundle whose fibre is H) are no longer globally defined
on CP n because this bundle is nontrivial by construction, and therefore it admits no global
section.

The physical implications of the local character of these coherent states are easy to
interpret. Again set n = 1 for simplicity. In the case of the trivial bundle of section 4.3,
the cross section of coherent states above any observer on the base CP 1 was globally defined.
Hence the semiclassical regime was universally defined for all observers on CP 1. In contrast,
the nontriviality of the bundle considered here implies that the semiclassical regime is defined
only locally, and it cannot be extended globally over CP 1. What to one observer appears to
be a semiclassical effect need not appear so to a different observer.

4.5. Submanifolds of complex projective space

Any smooth, complex algebraic manifold M given by a system of polynomial equations in
CP n has a natural symplectic structure [2]. Let ι : M → CP n be an embedding of the
complex manifold M into complex projective space. Then the symplectic form ω on CP n

can be pulled back to a symplectic form ι∗ω on M . The fibre bundles of sections 4.3 and 4.4,
when pulled back to M , naturally suggest new instances of classical limits. The submanifold
M must satisfy the integrality conditions [10].

5. Physical discussion

We would first of all like to emphasize that dequantization has already been proposed in
the literature; see [32–35] for some important works on this topic. These papers present
interesting geometric approaches that explore in detail the deep link existing between classical
and quantum mechanics. Moreover, these dequantizations also allow for the non-uniqueness
of the classical limit advocated here.

The approach presented in this paper, as compared with [32–35], is motivated in duality
properties found in strings and M-theory, as summarized in section 1. We have developed a
mechanism by which coherent states can be defined only locally on C, instead of globally. In
this way, two different observers on C need not agree on whether a certain given phenomenon is
strong quantum or semiclassical. What one of them terms semiclassical may well be perceived
by the other as strong quantum. To the best of our knowledge, this viewpoint is new, even if
our techniques and results may partially overlap with those in [32–35].

We have in sections 4.3 and 4.4 presented an example of a group action on separable,
infinite-dimensional complex Hilbert space H that leads to two different dequantizations of
the quantum mechanics of a point particle. The coherent states obtained in section 4.3 are
those of the standard Berezin quantization of CP n, while the coherent states of section 4.4
may be interpreted as belonging to a nontrivial quotient of the former. In particular, locally on
C, the latter coincide with Berezin’s coherent states for CP n, but globally they do not.

An interesting extension of our approach would be to formulate a classification theorem for
dequantizations, analogous to the Kostant–Souriau theorem of geometric quantization [7, 8].
Such an approach requires classifying all possible quotients Q/Gof quantum phase space under
G-actions. Work is in progress along this line [36]; we hope to report on this in the near future.

We have emphasized the key role played by the symplectic structure in switching back
and forth between Q and C. In contrast, the role played by the Riemannian metric gC has been



3314 J M Isidro

reduced to that of providing quantum numbers once a certain classical limit has been fixed. It is
precisely through lifting the metric dependence that we have succeeded in obtaining different
classical limits for a given quantum theory. In this sense, as suggested in [24], implementing
duality transformations in quantum mechanics is very reminiscent of topological field theory.

Lifting the metric dependence in favour of diffeomorphism invariance, as in topological
theories, is also important for the following reasons. We have made no reference to coupling
constants or potentials, with the understanding that the Hamilton–Jacobi method has already
placed us, by means of suitable coordinate transformations, in a coordinate system where all
interactions vanish. At least under the standard notions [18] of classical versus quantum, this is
certainly always possible at the classical level [37]. At the quantum level, the approach of [38],
which contains standard quantum mechanics as a limiting case, rests precisely on the possibility
of transforming between any two states by means of diffeomorphisms. Diffeomorphism
invariance is a very powerful tool. It can be used [38] in the passage from classical to
quantum. It can also be applied in the passage from quantum to quantum, as in [39], where
Hamiltonian quantum theories are constructed from functional integrals in the Osterwalder–
Schrader framework [40,41]. The viewpoint advocated here is that it can also be successfully
applied in the passage from quantum to classical.

Then the only truly quantum ingredient we have at hand is h̄. In fact one can think
of quantization, especially of deformation quantization [15, 16], as performing an infinite
expansion in powers of h̄ around a classical theory. This full infinite expansion gives the
full quantum theory. Dequantization may then be interpreted as the truncation of this infinite
expansion to a given finite order. As we have argued, if the quantum fibre bundle Q → C is
nontrivial, this expansion in powers of h̄ is local instead of global, so the notion of classical
versus quantum may not be globally defined for all observers.

6. Mathematical discussion

To conclude we would like to comment on some interesting mathematical points of our
construction.

In the construction of the Hopf bundle of section 4.4 one could ask, why not use a U(1)
subgroup of U(H) instead of U(∞)? In fact one could do so, but at the cost of rendering
the whole infinite-dimensional bundle over C trivial; only the finite-dimensional subbundle
corresponding to the Hopf bundle would remain nontrivial. There would be no contradiction,
since the triviality of a given bundle does not prevent the existence of nontrivial subbundles.
For example, given any vector bundle E → C over a (compact and Hausdorff) base manifold
C, there always exists a complementary vector bundle F → C such that E ⊕ F is trivial [42].

However, the situation just described is precisely what we want to avoid. We need the
complete, infinite-dimensional bundle over C to be nontrivial in order for the classical limit
not to be globally defined; a finite-dimensional subbundle will not suffice. In retrospect, this
argument also justifies our choice of U(∞) in section 4.4. The topologies considered above
on U(H), while rendering every inclusion U(n) ⊂ U(H) continuous, are not the maximal
topology enjoying that property. On the contrary, the direct limit topology on U(∞) is the
maximal one with that property. This ensures that the addition of an infinite number of
(spectator) dimensions to the n-dimensional Hopf bundle (26) does not render the complete
infinite-dimensional bundle trivial, as would be the case with U(H).

Quantum-mechanical symmetries are usually implemented by the action of unitary
operators on H. The group U(H) thus arises naturally in this set-up. However, any principal
bundle with structure group U(H) is necessarily trivial. In retrospect, this explains why the
classical limit is always considered to be globally defined. In order to bypass this difficulty
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we have considered the subgroup U(∞) ⊂ U(H) and endowed it with a topology of its own
(the direct limit topology) that is different from the induced topology it would inherit from
U(H). Only so do we have a chance of renderingU(∞)-bundles nontrivial. It is interesting to
observe thatU(∞), instead ofU(H), is the right group that contains allU(n) groups, in a way
that naturally respects their topologies. U(n) groups arise naturally in theories with solitons
and instantons. In supersymmetric Yang–Mills theories and superstring theory, solitons and
instantons lie at the heart of the notion of duality. This supports the notion that implementing
duality transformations in quantum mechanics is in fact possible through mechanisms such
as the one proposed here. It would also be very interesting to extend our mechanism to more
general quantum-mechanical structures such as rigged Hilbert spaces [43].
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